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A s  part  of a transonic  research  program, a series of wing-body 
combinations is being investigated in the Langley  high-speed 7- by 
10-f oot tunnel over a Mach  number range of about 0.60 . t o  1.20, utilizing 
the transonic-bump teat  technique. 

This paper  presents the result5 of t he  inveetigation  of a w l q -  
alone and a wing-fuselage configuration mployhg  a w i n g  w t t h  qmzter- 
chord line swept back 60°, aspect  ratio 2, taper  ratio 0.6, and an 
m C A  65~006 airfoil  section. The results  are  presented  as  lift, drag, 
pitchFng-moment,. a;nd bending-ment coefficients for both.  configuratfona . 
Ln addition,  effective  downwash angles and point dyna&c pressuree for 

. a range of tail hefghts at a probable tail length are present+ for the 
two configurations  inveatigated. only a brief analysis wa8 made in 
order  to  facilitate the publishin@; of the data. 

A series  of wing-fuselage canibtnations is. being investigated in 
the Langley high-speed 7- by 10-foot tunnel to atudy  the effects  of w i n g  
geometry on'longitudiml stabflity  characteristics at t r a m o n i c  speeds. 
In the  research program utilizing the transonic-bump  technique, a bhch 
rider range of about 0.60 to 1.20 is  investigated. 

This  paper presents t h e  results of t h e  investigation of the x-- 
alone and wing-fuselage  configuratians employing a wfng with the 
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quarter-chord  line  swept  back 60°, aspect  ratio 2, taper  ratio 0.6, 
and an NACA 65~006 airfoil  section parallel to t h e  f ree  etream.  The 
reeulta of a 600 aweptback w i n g  of  aspect  ratio 4, which was -part of 
t he  present  traneonic program, are presented. In reference 1. 

MODEL AND APPARATUS 

The wing of the  s e m i a p n  model had 60° of sweepback  referred  to 
the  quarter-chord line, aspect  ratio 2, taper  ratio 0.6, and an 
NACA 65~006 airfoil  section  (reference 2) parallel to  the f r e e  etream. 
The wing was made of beryllium  copper and the fuselage of braee. A 
two-view draw- of t h e  model ie presented in figure 1 and ordinates 
of the  fuselage  of  actual  fineneee-ratio 10 (achfeved  by  cutting off 
the rear  portion of a stremine body of fineneee ratio 1 2 )  a r e  given 
in table I. 

The m o d e l  was mounted on an electrical strain-gage balance enclosed 
in the b m p  and the lift, drag, pitching  moment, and bending  mament 
about  the model plane of synnnetry  were  measured with calibrated 
potentiometers. 

Effective damwash angles were determined for a range of tail 
heights by m e a s u r i n g  the floating angles of f i v e  free-floating  tail6 
with  calibrated  slide-wire  potentimeters. Details of the floating t a i l 8  
are given Fn figures 2 and 3, while a view .of the mdel mounted on the 
bump eharing three of the floating tails is given In figure 4. The 
tails used in this inveatigation a r e  the Bame as those used in reference 1. 

A total-pressure rake -8 used to determine e e  dynamic-pressure 
ratios  for a range.  of tail heights  along a bine which  contained the 
25-percent  mean-aerodyoamic-chord  point of the  free-floating  tails. 
The t~tal-pres~lure tubes  were  spaced 1/8 inch apart near the  chord lFne 
extended and 1/4 inch apart elemhere. 
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C O r n I C I E N T S  AND SYMBOLS 
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bending-moment coefficient  about  root chord line 

(at p m e  of symmetry) (Root be;? moment) 

per s q w e  foot (p+/z) 

9 2 2  

effective dynamic pressure  over epan of model, pound8 

twice wing area of semispan mdel, 0.l25 square foot 

meas aerodynamic chord. of  wing ,  0.255 foot; based on 

relationship '2 c 2 b  (ue- the theoretical   t ip> s r 2  

local Xing chord, parallel t o  plane of symmetry 

me&z1 aerdynamic  chord of tall 

lateral center of wessure 

air  density, slugs per cubic foot 

-free-atream veloci-ty, fee t  per second. 

effective Mach nmber over span of d e l  

l o c a l  M%ch number 

average local Mach nmber, chordwise 

Reynolds nzmzber of wing based. on c - 

-le of attack, degree8 

effective downwash angle, degrees 

r a t io  of point dynamic preseure, along a lFne contaFnfng 
the quarter-chord  points of the mean aerodynamic- chorda 
of the free-float- tails, .t;o the  local free-stream 
Qmamic pressure 
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h t  

Subacript8 : 

M 

tail height   re la t ive  to  w i n g  chord  plans  extended, 
percent semispan; po8itiv.e f o r  tail $osit iom above 
chord plane extended . ~ . - . .. . 

. . . . . . . . . I I  

.. .. 

at  constant Mach number 

a t  zero lift 
" 

.. 

TESTS AM> CORRECTIONS 

The t e s t s  were conducted In %he Langley high-speed 7- by 10-foot 
tunnel hy w e  of an adaptation of the. mAClA w l n g - f l o w  technique f o r  
obta- transonic 8peeda. The method used involved  the m u t i n g  of 
a model in  the  high-velocity flow field generated  over t he  curved 
ewface of a bump located on the tunnel floor. . (See reference 3 . )  

Typical contours of l o c a l  Mach numbers in the region af the model 
location on the bump, obtained from survey8 rJith ho model Fn position, 
a r e  sham in figure 5. There a Mach number gradient which resulted . In a dffference of about 0.03 over the apan of the model a t  the lowest 
and highest Mach numbere w i t h  a maximmu. difference of about 0.05 
present a t  a Mach number of a b m t  1.0. The chordwise Mach number 
difference varied from about 0.01 t o  0.02. 'No a t temyt  h.as been mde 
to  evaluate the effect8 of these spanwise and chordwiee variations i n  
Mach number. The long-dash 1-8 sham near the wtog root  represent 
a local Mach number 5 percent below the IIlaximum value and indicate the 
extent of the bump boundary layer .' The effective tes t  Mach number 
waa obtained from contour  chart6 similar t o  those presented in  figure 5 
from the relationship 

b /2 
M = 2 L  s c & d y  

The variation of mean tes t  Reynolds number with Mach number is 
shown in figure 6 .  The boundaries in the figure indicate the range 
i n  Reynolds number caueed ky v a r i a t i o m  in te8t conditions during the 
course of the Investigation. 

Force and moment data, Bffective downwash anglee, and the r a t i o  
of aynamic pressure at  25 percent o f . t h e  man aerodynamic chords of 
the free-floatin@; tails to.free-stream dymmlc presmre were obtilned 
f o r  the model configurations-tested througfi a Mach number range of 0.70 
t o  1.18 and an angle-of - a t . ~ c k  range of -2O t o  loo. 

. .. 

. .  
. " 

. 
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The end-plate tares  on drag were obtafned through the t e s t  Mach 
number range a t  zero angle of attack bg te8ting the madel configurations 
without end plateer. For these tests  a gap of about 1/16 inch mer 
maintained between the whg  root and the bum. Burface, and a sponge- 
wlper sea l  mer fastened  to the wing butt.beneath the surface of the bmrp 
to prevent  leakage. (See f i g .  7.) The drag end-phte tares ware 
assumed to be Fnvariant w i t h  angle of attack and the tares obtain& at  
zero angle of attack were applied to a l l  drag data. Jet-bounlary 
corrections have not been evaluated i n a m c h  as the boundary conditions 
to be satilsfied are not  rigorously def-d. However, inasmuch as the 
e f f e c t i v e 4  low field is U g e  c-ed w i t h  the span and chord of the 
model, these  corrections are  believed t o  be d. Considerations of 
the results of s t a t i c  loadlng of the w i n g  of reference I indicate that 
the deflection of the present wing d e r  load would be negligible. 

3Yo.m measurmenta of tail float- angles xithout a model 
installed, it was determined that a tail spacing of 2 inches relative 
to the wing chord plane would prduce  negligible  interference  effects 
of ref lected shock waves on the taiLfloating angles. Dowrrwash angles 
f o r  the wing-alone configuration w e r e  therefore  obtained s f m u l t a n e o ~ ~ l y  
f o r  the m i m e ,  highest, and loweet tail positions in one series of 
tes ts  and f o r  the two intermediate positions in  succeeding rum. 
(See f i g .  3. ) For the wing-fuselage tes ts ,   the   effect ive dowmaah 
angles at  the chord plane extended were determined by mounting a f ree-  
f loat ing tai l  . o n  the center line and at the surface of the fueelage; 

than the other taila. The downw&eh angles presented are  increments 
from the tail f l a t i n g  angles without  a model in poeition. It should: 
be  noted that t h e  f loat ing angles measured are actually a measure of 
the Etngle of .  zero .pitching m e n t  about the t a i l - p i v o t  axis   ra ther  than 
the angle of zero lift. It has been estimated that, for   the  tail 
mrangement used, a 2O s-ee downwash gradient over the tail win 
result in  an error of about 0.2O in the resul tant  floathg angle. 

- thus t h i s  t a i l  wae placed a t  a sLtght ly  different spanwise position 

- 

Total-pressure readings were obtained a t  comtant -ea of at tack 
through the. Mach number range without an end pla te  on the model to 
elbuhate end-plate w~~ke6 and with the gap around t h e  model sealed to 
-ze any leakage effects .  The pressures have been corrected f o r  
bow-wave loss aand the static-pressure  values used fn computing m c -  
pressure  ratios were obtained without .a model in position. 
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RESDLTS AND DISCUSSION 

A t ab le  of. the figures  preeenting  the  reeults f o l l o w  : 

Figure 

Wing-alone force  data . . . . . . . . . . . . . . . . . . . . . . .  0 
Wing-fuaelage force data . . . . . . . . . . . . . . . . . . . . . . . .  9 
Effective damwaah angles ( w i n g  a b n e )  . . . . . . . . . . . . . . .  10 
Effective  downwash angles ( w i n g  fuselage) . . . . . . . . . . . . .  11 
Downwash gradients . . . . . . . . . . . . . . . . . . . . . . . .  12 
Dynamic-pressme surveye . . . . . . . . . . . . . . . . . . . . . .  13  
Slmrmary of  aerodynamic  characteristics . . . . . . . . . . . . . . .  14 

Unless otherwise noted, the  discuesion  is based on t h e  eummary 
curves  presented in figure 14. The slopea  have  been averaged at % = 0 
over a lift-coefficient range of a. 1. 

Lift  and Drag Characteristica 

The lift-curve slope at z e r o ' l i f t  of t he  wing-alone configuration 
had very  little  variation  throughout the Mach number  range but increaesd 
from a value of 0.040 at M = 0.70 to a maximum value  of  about 0.046 
near M = 1.03. This  value  of 0.040 at M = 0.70 cnmpared with a 
theoretical  value  -of  about 0.036 estimated  for  this  Mach  number by the 
method of reference 4. The addition of t h e  fuselage increased t h e  
let-curve slope  about 8 percent  throughout the teet Mach number range. 
The nonlinearity of t h e  lift  curves  (figs. 8 a d  9) is congruous  with 
the effect of aspect  ratio and sweepback  encountered on s h d l a r  
plan forme at low speeds and at higher ReJlnolds nuuibers  (reference 5). 

The drag rise  at zero  lift  occurred at a Mach number of about 1.03 
for  both t he  wing-alone and wing-fuselage conffgurationa.  The zero lift 
drag value at M = 0.70 of 0.004 remined constant  up  to M = 1.00 
and Increased padmlly thereafter to a value of 0.010 at t he  highest 
teet  Mach  number. The addition of the  fuaelage  increased the total 
drag coefficient by an increment  of about 0.007 throughout  the 
subsonic  Mach  number  range.  This  increment  increased  to a value  of 
of 0.018 at M = 1.18. The variation of drag coefficient  with  Mach 
number for  both  codiguratione  is notably similar to tihat of the w l n g  
of reference I although the absolute  values a r e  somewhat lower for the 
present w i n g .  

" - 

The lateral  center of pressure for t h e  wing alone (CL = a.1) waa 
located  at 43 percent of the semispan at a Mach number of 0.70. This 
value  compares  with a weoretical value of 44.5 percent eemiepan 
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est-ted by use of reference 4. It should  be-noted that f o r  the 
wing-alone configuration, gcp remina practically  constant w i t h  Wch 
number except f o r  an bbcmrd shlft of about 3 percent semispan in the 
Mach  nlnnber range from M = 0.95 to M = 1-10. The addition of the 
fuselage moved the Lateral  center of pressure inbard about 5 percent 
semispan up to M = 1.07. Above t h i s  Mach nmber the effect of the 
fuselage wae somewhat @?eater and remlted i n  about a 10-percent 
inboard movement of the lateral center of pressure a t  M = -1.18. 

Pitching-Moment Characteristics 

H o a r  zero lift t he  aerodynamic-center location f o r  the w i n g - a l o n e  
configuration was at 25 percent of the m e a n  aemdymmic  chord 

(a4 = 0 up to M = 0.85. This value cmpared. w i t h  an aerodymmic- 

center location of about 23 percent mean aerodpmlc chord estimated 
for  M = 0 by the method of reference 4. The addi t ion of the fuselage 
moved the aerodynamic center rearward about 4 percent mean aerodynamic 
chord up t o  M = 1.05. Above this Mach number the a t a b i l i z f n g  Influence 
of the fuselage is reduced and becorks zero a t  M = 1.18. The stabi-  
lizing influence of the fuseage on a wing of 6ou sweep has been 
previously  noted experimen-izdly for  this Mach number range (reference 1). 

Unlike the reeults of the w i n g  of reference 1, it is noted that 
for both w i n g  aad wing-fueelage configurations  (figs. 8 and 9) there 
i e  no evidence of unataBle pitching-moment trenda a t  the highest lift 
coefficients obtained for  all test Mach numbers. These pitching-moment 
trends are very similar t o  thoae obtained at low speeda for  an almost 
identical p k - f o r m  configuration  (reference 5 ) .  

Damwash md Dpmmic-Bessure  Surveys in Region of the T a i l  Plane 

The dowarash gradient & /aa near zero lfft fo r  the wtng alone 
(fig. 14)  had l i t t l e  v a r i a t i o n  w i t h  Mach nmber f o r  constant tail 
heights of 0 perce-it and *3O percent earnispan. 

The addition of the fuselage  increased the downwa8h gradient &/aa 
(fig.  12) f o r  all tail heighta up to  a Mach number of 0.98 with the 
greatest  effect  occurring at  zero tail-height positfon. It should be 
noted that the effective dourwash angles me determined over a s ~ g h t ~ y  
more outboard spa;nwise region for  the fueelage-tail  configuration 
( h t  = 0) than for  the wing-alone middle tail ( see figs.  2 and 3 ) .  
Above M = 0.98  the downwash g r d i e n t  waa about the same 88 the w i n g -  
alone  gradients. At M = 1.15, hmever, a E /& f o r  the w h g  fuselage 
was about 25 percent less than the wing alone f o r  all tail heighte. 

- 
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The results of the point-Qnmic-preaeure surveye made along a 
line  perpendicular  to t h e  chord  plane extended ( a t  . . a  =.a and containlng 
the  25-percent  mean-aerodynamic-chord  point of the  free-floating tails 
are  presented in figure 13.  There waa little change in the wake charac- 
teristics for all test angles of attack  for  the wing-alone configuration 
throughout the Mach  number  range. 

The addition of the fuselage had very  little  effect on the m c -  
pressure  characteristics for all test anglee of attack up to M = 1.00. 
Above this  Mach  number  the  addition  of tple fuselage increased the 108B 
in dynamic pressure at t h e  tail,  eepeciallg  at a = 100, for  tail 
heights  other than the tail  position  at t h e  wake center Ilns. 

It should be noted that for  both the wing-alone and wing-fuselage 
configurationa at all Mach nmbers the  wake  center lFne mved from the 
zero  tail-height  positfon  at a = Oo to about 8-percent-eemispm tail- 
height poaition  above  the  wing  chord plane at a = loo. 

Langley Aeronautical  Laboratory 
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Figure 1.- General arrangement of model with 60' meptback wing, aspect r a t io  2, taper ratio 0.6, 
and W A  65AOO6 afrfoil. All dimemione are in inches. 
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Figure 2.- Detail..s of wing fence and free-float- fail mounted on a model w i t h  60° sveptback wing, 
aspect ratlo 2, tqer ratio 0.6, and A K A  65A006 a l r f o l l .  A l l  dimensions are In inches. F 
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Figure 4.- A p ic to r i a l  view of the model w i n g  w i t h  quarter-chord l i n e  
swept back 60°, aspect ratio .2, t ape r   r a t io  0.6, and N X A  65~006 air- 
foil section showing free-floating tails, - 
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Figure 5.- Typical Mach number contours over transordc bump in region of model location. 
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Figure 6 . -  Variation of test Reynolds number with Mach number for a model wltn 60' sweptback wing, 
aspect ratio 2, taper ratio 0.6,  and M A  65Aoo6 a i r fo i l .  
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Figure 7. - A p ic to r i a l  view showing sponge-wiper-sed i n s t a l l a t i o n  on 
the.model wing w i t h  quarter-chord line swept back 60°, aspect r a t i o  2, 
taper   ra t io  0.6, and NACA 65~006 a i r f o i l  section. 
I 
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Figure 8.  - Concluded. 
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Figure 9.- Wing-heelage aerodynamic characterlatics f o r  a model with 60' swptback dag, aspect 
ratio 2, taper ratlo 0.6, and W A  65,4006 a i r fo i l .  
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Figure 9 .  - Concluded. 
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Figure 10.- Effective downwash angles in region  of tail plane for a model with 60 eweptback wing, 
aspect  ratio 2, taper ra t io  0.6, and M A  65~006 airfoi l .  Wing ah=. 
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Figure 12.-  Variation with tail height of downwash gradient for a model wlth 60’ sweptback wing, aspect 
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